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Introduction: 

The theory of fuzzy sets has evolved in many directions after investigation of notion of fuzzy sets by Zadeh 
[36] and is finding many applications in wide variety of fields in which the phenomenon under study are too 
complex or too ill defined to be analyzed by the conventional techniques. Fuzzy sets were taken up with 

enthusiasm by engineers, computer scientists and operations researchers, particularly in Japan where fuzzy 
controllers are now an integral feature of many manufactured devices. In applications of fuzzy set theory the 

field of engineering has undoubtedly been a leader. All engineering disciplines such as civil engineering, 
electrical engineering, mechanical engineering, robotics, industrial engineering, computer engineering, 
nuclear engineering etc. have already been affected to various degrees by the new methodological 

possibilities opened by fuzzy sets. There is large number of authors who studied applications of fuzzy set 
theory in different engineering branches. We are mentioning some of them Fetz [5], [6] Fetz et a l. [7], Halder 

and Reddy [11], Lessmann, Muhologger and Oberguggenberger [22] and many others applied fuzzy set 
theory in civil engineering. A method utilizing the mathematics of fuzzy sets has been shown to be effective 
in solving engineering problems such as aircraft gas turbine (Law and Antonsson [21]), car body structure 

NVH design (Mathai and Cronin [24]), multiobjective system optimization (Rao and Dhingra [25]), 
preliminary passenger vehicle structure (Scott, Law and Antonsson [27]), computational tools for 

preliminary engineering design (Wood and Antonsson [35]), knowledge base system design (Zimmermann 
and Sebastian [37]), intelligent system design support (Zimmermann and Sebastian ), machine flexibility 
(Tsourveloudis et al. [34]) and many others.  

A fixed point is one of the basic tools to handle various physical formulations. Fixed point theorems in fuzzy 
mathematics are emerging with vigorous hope and vital trust. There have been several attempts to formulate 

fixed point theorems in fuzzy mathematics. From amongst several formulations of fuzzy metric spaces (Deng 
[47], Erceg [51], Kaleva and Seikkala [19], Kramosil and Michlek [20] George and Veeramani [9]) Grabiec 
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[8] followed Kramosil and Michalek [20] and obtained fuzzy version of Banach contraction principle. Jungck 

[14] established common fixed point theorem for commuting maps generalizing the Banach's fixed point 
theorem. Sessa [26] defined a generalization of commutativity. Further Jungck [15] introduced more 
generalized commutativity so called compatibility. Jungck and Rhoades [16] introduced the notion of weak 

compatible maps and proved that compatible maps are weakly compatible but converse is not true.  

The notion of compatible maps in fuzzy metric spaces has been introduced by Mishra et a l. [23], compatible 

maps of type (α) by Cho [2] and compatible maps of type ( β) by Cho, Pathak, Kang and Jung [40]. Chang, 
Cho, Lee, Jung and Kang [44], Cho [1], Fang [60], George and Veeramani [9], Jung, Cho, Chang and Kang 
[18], Jung, Cho and Kim [17], Mishra, Sharma and Singh [23], Sharma [29], [30], Sharma and Deshpande 

[32]-[33], Subrahmanyam [28] and many others studied fixed point theorems in fuzzy metric spaces. Various 
fixed point theorems, for compatible mappings satisfying contractive type conditions and assuming 

continuity of at least one of the mappings in the compatible pairs in metric spaces and fuzzy metric spaces, 
have been obtained by many authors.  

Preliminaries: 

Now we begin with some definitions 

Definition  1 : A binary operation * : [0,1]   [0,1]  [0,1] is called a continuous t-norm if ([0,1], *) is an 

Abelian topological monoid with the unit 1 such that a * b  c * d whenever a  c and b  d for all a, b, c, d 
are in [0,1]. 

Examples of t-norm are a * b = ab and a * b = min {a,b}. 

Definition 2: The 3-tuple (X, M, *) is called a fuzzy metric space (shortly FM-space) if X is an arbitrary set, * 

is a continuous t-norm and M is a fuzzy set in X2 [0,) satisfying the following conditions for all x, y, z in 
X and t, s   > 0, 

(FM-1)        M(x, y, 0) = 0, 
(FM-2)        M(x, y, t) = 1 for all t > 0 if and only if x = y,  
(FM-3)        M(x, y, t) = M(y, x, t),  

(FM-4)        M(x, y, t) * M(y, z, s)    M(x, z, t+s), 

(FM-5)        M(x, y,.): [0,1]   [0,1] is left continuous. 

In what follows, (X, M, *) will denote a fuzzy metric space. Note that M(x, y, t) can be thought as the degree 
of nearness between x and y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0 and M(x, y, t) 

= 0 with  and we can find some topological properties and examples of fuzzy metric spaces in (George and 
Veeramani [9]). 

Example  1:   Let (X, d) be a metric space. Define a * b = ab or a * b = min {a, b} and for all x, y in X and t > 
0, 

Then (X, M, * ) is a fuzzy metric space. We call this fuzzy metric M induced by the metric d the standard 
fuzzy metric. 
In the following example, we know that every metric induces a fuzzy metric.  

Lemma   1:  For all x, yX, M(x, y,.) is non-decreasing. 
Definition 3 :    Let (X, M, *) be a fuzzy metric space .  

A sequence {xn} in X is said to be convergent to a point x  X (denoted by lim xn = x), if 

               limn  M (xn ,x , t)   =   1,  for all t > 0. 

Remark 1:  Since * is continuous, it follows from (FM-4) that the limit of the sequence in FM-space is 
uniquely determined. 

Let (X,M,*)  be a fuzzy metric space with the following condition: 
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(FM-6)          limt     M(x,y,t)  =  1  for all x,y    X . 

Lemma  2 :  If  for all x,y  X , t > 0 and for a number k  (0,1),                 

 M(x,y,kt)    M(x,y,t)      then x = y. 

Lemma 3 :  Let {yn} be a sequence in a fuzzy metric space (X, M,*) with the condition (FM-6). If there 

exists a number k(0,1) such that  

M (yn+1,yn+2,kt) ≥  M(yn,yn+1,t)                                                     (1.b)        

  for all t > 0 and n = 1,2,... then {yn} is a Cauchy sequence in X. 

Definition 4:  Let S and T be mappings from a fuzzy metric space (X, M,*) into itself. The mappings S 
and T are said to be compatible if 

  limn   M(STxn , TSxn , t )   =   1, 
for all t > 0, whenever  {xn} is a sequence in X such that 

limn    Sxn     =    limn    Txn    =   z    for some  z  X.  
 

Definition 5 : Let S and T be mappings from a fuzzy metric space (X,M,*) into itself. The mappings S 

and T are said to be compatible of type () if, 

limn   M(STxn , TTxn , t )   =  1, limn   M(TSxn , SSxn , t )   =   1, 
for all t > 0, whenever  {xn} is a sequence in X such that 

limn    Sxn     =    limn    Txn    =   z    for some  z  X. 
Definition  6 : A pair of mappings S and T is called weakly compatible pair in fuzzy metric space if they 

commute at coincidence points; i.e. , if  Tu  =  Su for some u  X, then  TSu  =  STu.  

Example  2:  Let X = [0, 2] with the metric d defined by   d(x, y) = |x – y|. For each t  (0, ) define 

  M(x, y, t) = t / t+ d(x,y)                          x, y  X 

  M(x, y, 0) = 0         x, y  X 

Clearly M(x, y, *) is a fuzzy metric space on X where * is defined by a*b = ab or a * b = min {a, b}. 

Define A, B : X  X by 

Ax = x if x  [0, 13 ) , A(x) =  13   if x   13  and Bx =  x/(x+1) for all x  [0, 2] 

Consider the sequence {xn = (½) + (1n) : n  1} in X . 
 

Then   limn     Axn =  13  ,  limn      Bxn  = 13. 
 

But limn     M(ABxn, BAxn , t) = t / t+[(1/3)-(1/4)]    1. 
 

Thus A and B are noncompatible. But A and B are commuting at their coincidence point x = 0, that is, 
weakly compatible at x = 0. 

Also  limn    M(ABxn, BBxn , t) =t / t+[(1/3)-(1/4)]   1  and 

 

limn       M(BAxn, AAxn , t) =  t / t+[(1/4)-(1/3)]      1 

 

Thus A and B are not compatible of type(). 

Further, 

limn       M(AAxn, BBxn , t) = t / t+[(1/3)-(1/4)]      1 

 

Thus A and B are not compatible of type (). 
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In view of this example, we observe that weakly compatible maps need not be compatible, 

weakly compatible maps need not be compatible of type (), weakly compatible maps need not 

be compatible of type (). 

We prove the following. 
Theorem  :  Let (X, M, *) be a complete fuzzy metric space with continuous t-norm * defined by 

(t*t)  t for all t  [0,1] and  A, B, S, and T be mappings from X into itself satisfying the 
following conditions 

(1.1)  A(X)  T(X) and B(X)  S(X), 

(1.2) M(Ax,By, kt)  ≤  φ[((M²(Sx,Ty,t),. (M(Sx,By,(2-)t)*M(Ty,Ax,t))2,                            

                                       (M(Sx, Ax, t)*M(Ty, Ax, t))2]1/2  , 

 for all x,y  X and   [0,2] and t > o .  

(1.3) the pairs {A,S} and {B,T} are weakly compatible.  
Then A, B, S and T have a unique common fixed point in X.  

Throughout this paper R+  denotes the set of non-negative real numbers  and the function  φ(R+ )³ 
→ R+  satisfies the following conditions: 
(i)   φ is upper semi-continuous, non-decreasing in each coordinate variable ; 

(ii)  for each t > 0, γ(t)  =  φ(t,t,t)  <  t, where γ : R+ → R+ . 
  

Main Results: 

We extend Theorem A for five mappings with a different proof. We prove the following.  
Theorem 1 :  Let (X, M, *) be a complete fuzzy metric space with continuous t-norm * defined 

by (t*t)  t for all t  [0,1] and  A, B, S, T and P be mappings from X into itself satisfying the 
following conditions 

(1.1) P(X)  AB(X) and P(X)  ST(X), 

(1.2) There exists a number k  (0,1) such that 

M(Px,Py, kt)   ≥  φ [M²(ABx,Px,t),(M(STy, Py, t) * M(STy, Px, t))2, 

                                        (M(ABx,Py,(2-)t)*M(ABx,STy,t))2]1/2 , 

 for all x,y  X and   (0,2) and t > o .  

(1.3)  AB  =  BA , ST  =  TS , PB  =  BP , PT  =  TP ,  
(1.4) the pairs {P,AB} and {P,ST} are weakly compatible. 

Then A, B, S ,T and P have a unique common fixed point in X.  

Proof :  By (1.1) since P(X)  AB(X) , for any point x0  X , there exists a point  x1  X such 

that Px0  =  ABx1 . Since  P(X)  ST(X), for this point x1 ,we can choose a point x2  X  such 
that Px1  =  STx2  and so on. Inductively, we can define a sequence {yn} in X such that 

(1.5)    y2n = Px2n = ABx2n+1    and   
y2n+1 = Px2n+1 = STx2n+2      for n = 0,1,2,... 

Now we show that {yn} is a Cauchy sequence. For t > 0 and  = 1-q with q  (0,1),  firstly we 

prove that 
 M(y2n+1,y2n+2, kt)    ≥  M(y2n,y2n+1, t)  if  

 M(y2n+1,y2n+2, kt)    <  M(y2n,y2n+1, t)   
then by (1.2), we have 

M(y2n+1,y2n+2, kt)   =  M(Px2n+1, Px2n+2, kt)     
≥   φ[M²(ABx2n+1,Px2n+1,t), 

              (M(STx2n+2, Px2n+2, t) * M(STx2n+2, Px2n+1, t))2, 

           (M(ABx2n+1,Px2n+2,(2-α)t)*M(ABx2n+1,STx2n+2,t))2]1/2    

 Putting    =  1- q  , we have 
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≥φ[M²(y2n,y2n+1,t),(M(y2n+1,y2n+2,t)*M(y2n+1,y2n+1,(1- q)t))2,(M(y2n,y2n+2,(1 + 

q))t)*M(y2n,y2n,t))2]1/2                   
≥   φ[M²(y2n,y2n+1,t),(M(y2n+1, y2n+2, t) *1 )2, 
         (M(y2n,y2n+1, t)* M(y2n+1,y2n+2, qt)* M(y2n,y2n+1, t)))2]1/2   

≥   φ[M²(y2n,y2n+1,t),(M(y2n+1, y2n+2, t))2, 
                          (M(y2n,y2n+1, t)* M(y2n+1,y2n+2, qt))2]1/2   

Since t-norm * is continuous and M(x,y, .) is left continuous, letting q  1, we have 
M(y2n+1,y2n+2, kt)      ≥   φ[M²(y2n,y2n+1,t),(M(y2n+1, y2n+2, t))2, 

                                   (M (y2n,y2n+1, t)* M(y2n+1,y2n+2, t))2]1/2  , 
for n = 1,2, . . . and so , for positive integers n, p,  
  M(y2n+1,y2n+2, kt)   ≥   φ[M²(y2n,y2n+1,t),(M(y2n+1, y2n+2, t/kp))2, 

                          (M(y2n,y2n+1, t)* M(y2n+1,y2n+2, t/kp))2]1/2  , 

Thus since M (y2n+1,y2n+2, t/kp)   1 as p  , we have 

  M(y2n+1,y2n+2, kt)   ≥   φ[((M²(y2n,y2n+1,t),1,(M(y2n,y2n+1, t)))2]1/2  , 
 

Since φ is a non-decreasing in each coordinate variable, we claim that for every n  N,  

  M(y2n+1,y2n+2, kt)       M(y2n,y2n+1, t)   

For if M(y2n+1,y2n+2, t)   <   M(y2n,y2n+1, t)  , then by (1.2) , we have  
  M(y2n+1,y2n+2, kt)   ≥   φ[M²(y2n,y2n+1,t),1,(M(y2n,y2n+1, t)))2]1/2  , 

   M(y2n+1,y2n+2, kt)      γ [M²(y2n, y2n+1, t))]1/2   <   M(y2n, y2n+1, t). 
This gives 

   M(y2n,y2n+1, kt)  <   M(y2n, y2n+1, t). 

This is a contradiction. Hence  M(y2n+1,y2n+2, kt)  M(y2n, y2n-1, t), for every n  N and t > 0 . 

Similarly, we have     M(y2n+2,y2n+3, kt)     M(y2n+1, y2n+2, t). 
Thus { M(y2n+1,y2n+2, kt)} is an increasing sequence in [0,1].  

Hence by Lemma 3, {yn} is a Cauchy sequence and by the completeness of the space X, {yn} 
converges to z. Since {Px2n} , {ABx2n+1},{STx2n+2} are sub sequences of {yn}also converges to 
z.   

Similarly since P(X)  AB(X) , there exists a point u  X such that  u  =  (AB)-1z. Then ABu = 

z. We shall use the fact that the subsequence of {yn} also converges to z. By (1.2), with  = 1, 

we have 
M(Pu,Px2n+2, kt)   ≥  φ [M²(ABu,Pu,t),  

                             (M(STx2n+2, Px2n+2, t) * M(STx2n+2, Pu, t))2, 
                                                (M(ABu,Px2n+2,t)*M(ABu,STx2n+2,t))2]1/2  , 

M(Pu,Px2n+2, kt)   ≥  φ [M²(z,Pu,t), 
                             (M(STx2n+2, Px2n+2, t) * M(STx2n+2, Pu, t))2, 

                                                         (M(z,Px2n+2,t)*M(z,STx2n+2,t))2]1/2 

which implies that, as n   , 
    M(Pu, z, kt)   ≥  φ [M²(z ,Pu,t),  

                                (M(z,z,t)*M(z,Pu,t))2, (M(z, z,t)*M(z , z ,t))2]1/2 
Or  M (Pu, z, kt)   ≥  φ [M²(z ,Pu,t), M2(z , Pu, t), 1]1/2 

Or  M (Pu, z, kt)   ≥ γ [M² (z, Pu, t))]1/2   <   M(z, Pu, t)  
I.e.  

     M(Pu, z, kt)   <   M(z, Pu, t)  

 which  is a contradiction. Therefore Pu = z. Thus Pu = ABu = z.  
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Similarly since P(X)  ST(X) , there exists a point v  X such that STv = z. Then by (1.2) with 

 = 1, we have 
                           M(Pu,Pv, kt)   ≥  φ [M²(ABu,Pu,t),(M(STv, Pv, t) * M(STv, Pu, t))2, 

                                                         (M(ABu,Pv,t)*M(ABu,STv,t))2]1/2   
    or    M(z ,Pv, kt)   ≥  φ [M²(z , z, t),(M(z, Pv, t) * M(z, z, t))2, (M(z ,Pv,t)*M(z, z ,t))2]1/2   

    or    M(Pu,Pv, kt)   ≥  φ [M²(z , z, t),(M(z, Pv, t) * M(z, z, t))2, (M(z ,Pv,t)*M(z, z ,t))2]1/2 

M(z, Pv, kt)          [M2(z, Pv, t)]1/2  <    M(z, Pv, t), 

M(z, Pv, kt)    <    M(z, Pv, t),  
 which is a contradiction. Therefore z  =  Pv . Thus STv = Pv = z. 
 Hence ABu = STv = Pu = Pv = z .  

 Since the mappings AB and P are weakly compatible therefore, commute at their coincidence 
point i.e. (AB)Pu  =  P(AB)u  i.e. ABz = Pz.  

Now for  = 1 in (1.2), we have 
M(Pz,Px2n+2, kt)   ≥  φ [M²(ABz,Pz,t), 

                             (M(STx2n+2, Px2n+2, t) * M(STx2n+2, Pz, t))2, 
                                                   (M(ABz,Px2n+2,t)*M(ABz,STx2n+2,t))2]1/2   

 Or M(Pz,Px2n+2, kt)   ≥  φ [M²(Pz,Pz,t),  

                             (M(STx2n+2, Px2n+2, t) * M(STx2n+2, Pz, t))2, 
                                                         (M(Pz,Px2n+2,t)*M(Pz,STx2n+2,t))2]1/2   

which implies that, as n   , 
M(Pz, z, kt)   ≥  φ [1,M2(z,Pz,t), (M(Pz ,z ,t)*M(Pz , z ,t))2]1/2 

     M(Pz, z, kt)   ≥  φ [M²(z ,Pu,t), M2(z , Pu, t), 1]1/2 

 Or       M(Pz, z, kt)   ≥  [M²(z, Pz, t))]1/2   <   M(z, Pz, t)  

i.e.    M (Pz, z, kt)   <   M(z, Pz, t)  
 which is a contradiction. Therefore Pz = z. Thus Pz = ABz = z.  
        Similarly since the mappings ST and P are weakly compatible therefore, commute at their 

coincidence point i.e. (ST)Pu  =  P(ST)u  i.e. STz = Pz.  

Now for  = 1 in (1.2), we have 

                  M(Pu,Pz, kt)   ≥  φ [M²(ABu,Pu,t),  
                                        (M(STz, Pz, t) * M(STz, Pu, t))2, 

                                                   (M(ABu,Pz,t)*M(ABu,STz,t))2]1/2  , 
                  M(z, Pz, kt)   ≥  φ [M²(z , z, t),(M(Pz, Pz, t) * M(Pz, z, t))2, 
                                                         (M(z,Pz,t)*M(z,Pz,t))2]1/2   

                  M(z, Pz, kt)   ≥  φ [1, M2(Pz, z, t),M2(z,Pz,t))2]1/2   

M(Pz, z, kt)   ≥  [M²(z, Pz, t))]1/2   <   M(z, Pz, t)  

i.e. M(Pz, z, kt)   <   M(z, Pz, t)  
which is a contradiction. Therefore  Pz = z . Thus Pz = STz = z.  

        This gives Pz  =   STz  =  ABz  =  z.                               

 By taking x  =  Bz and y  =  x2n+2 in (1.2) using (1.3) with   =  1, we have 

 M(P(Bz),Px2n+2, kt)   ≥  φ [M²(AB(Bz),P(Bz),t),  
                          (M(STx2n+2, Px2n+2, t) * M(STx2n+2, P(Bz), t))2, 

                                                (M(AB(Bz),Px2n+2,t)*M(AB(Bz),STx2n+2,t))2]1/2   

Or        M(Bz,Px2n+2, kt)   ≥  φ [M²(Bz,Bz,t), 
                                (M(STx2n+2, Px2n+2, t) * M(STx2n+2, Bz, t))2, 

                                                      (M(Bz,Px2n+2,t)*M(Bz,STx2n+2,t))2]1/2   

which implies that, as n   , 
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M(Bz, z, kt)   ≥  φ [ 1, (M(z, z,  t) * M(z , Bz, t))2, (M(Bz, z, t)*M(Bz, z, t))2]1/2  , 

M(Bz, z, kt)   ≥  φ [ 1, (1 * M(z , Bz, t))2, (M(Bz, z, t)*M(Bz, z, t))2]1/2   

M(Bz, z, kt)   ≥  [M²(z, Bz, t))]1/2   <   M(z, Bz, t)  

I.e. M(Bz, z, kt)   <   M(z, Bz, t)  
which is a contradiction. Thus  Bz = z . Since z  =  ABz , we have z  = Az . Therefore,  Bz = Az  
=  z  =  Pz. 

By taking x  =  x2n+1 and y  =  Tz in (1.2) using (1.3) with   =  1, we have 
M(Px2n+1, P(Tz), kt)  ≥   φ[M²(ABx2n+1,Px2n+1,t), 

                  (M(ST(Tz), P(Tz), t) * M(ST(Tz), Px2n+1, t))2, 
                (M(ABx2n+1,P(Tz),t)*M(ABx2n+1,ST(Tz),t))2]1/2   

M(Px2n+1, Tz, kt)  ≥   φ[M²(ABx2n+1,Px2n+1,t), 
                (M(Tz, Tz, t) * M(Tz, Px2n+1, t))2, 
                   (M(ABx2n+1,Tz , t)*M(ABx2n+1,Tz , t))2]1/2   

which implies that, as n   , 
M(z , Tz, kt)    ≥   φ[M²(z , z, ,t),   (M(Tz, Tz, t) * M(Tz , z, t))2, 

                    (M(z ,Tz , t)*M(z ,Tz , t))2]1/2   
Or    M(z , Tz, kt)  ≥   φ[ 1, (1 * M(Tz , z, t))2,    (M(z ,Tz , t)*M(z ,Tz , t))2]1/2   

Or     M(z , Tz, kt) ≥     [M²(z, Tz, t))]1/2   <   M(z, Tz, t)  
i.e. 

M(Tz, z, kt)   <   M(z, Tz, t)  
which is a contradiction. Thus  Tz = z . Since z  =  STz , we have z  = Sz .  
Bz = Az  =  Pz  =  Sz  =  Tz  =  z  i.e. z is a common fixed point of A, B, S, T and P.  

For the uniqueness let w ( w  z) be another common fixed point of A, B, S , T and P . Then by 

(1.2)  and using (1.3) with   = 1, we have 

M(Pz,Pw, kt) ≥ φ [M²(ABz,Pz, t),(M(STw, Pw, t) * M(STw, Pz, t))2, 
                                                     (M(ABz,Pw, t)*M(ABz,STw,t))2]1/2   

M(z,w, kt)   ≥  φ [M²(z,z, t),(M(w, w, t) * M(w, z, t))2, (M(z,w, t)*M(z,w,t))2]1/2   
M(z,w, kt)   ≥  φ [1,( 1 * M(w, z, t))2,(M(z,w, t)*M(z,w,t))2]1/2  , 

M(z , w, kt)    ≥     [M²(z, w, t))]1/2   <   M(z, w, t)  
i.e. M(w, z, kt)   <   M(z, w, t)  

which is a contradiction. Therefore,  z = w .                              
This completes the proof. 
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